启chur
【Nd同位素演化与模式年龄】
DePaolo和Wasserburg(1976a)对地球火成岩作了第一次Nd同位素测定。当他们将这些岩石的年龄与初始比值在Nd同位素随时间演化的图上投点时,他们发现太古宙火成岩所具的初始比值与陨石预测的球粒陨石均一源(CHUR)的演化显著一致(图3-13)。CHUR演化路径通常以直线画出,但是,事实上由于147Sm的有限半衰期(大约106Ga),它是一条非常缓的曲线。
图3-12挪威北部Sulitjilma表壳岩系温度-时间图解
由于Sm和Nd是稀土元素(REE),原子序数上仅差2,它们的化学性质非常类似,在晶-液过程中仅经历轻微的相对分馏。这意味着在地球岩石中,143Nd/144Nd比值偏离CHUR演化线相对于该曲线是小的(图3-13)。因此,DePaolo和Wasserburg提出了一种表示法,初始比值可以相对于CHUR演化线的万分偏差来表示,称之为ε单位(εNd)。数学上,该表示法定义为
同位素地质年代学与地球化学
式中t指的是计算εNd时的时间。ε表示法的另一个优点是将所有的数据标准化至CHUR,它去掉了对Nd分析是利用金属还是氧化物的不同分馏校正的影响。
同源岩浆岩套的初始比值传统上是由等时线与纵坐标的交点来确定。这些初始比值然后通过与CHUR同位素演化到此时的值相比可计算出εNd值。然而,大多数岩套中Sm/Nd比值差的分散引起初始比值测定的误差放大。早期Nd同位素研究中,在等时线套中该问题由分异岩石包体来解决,因为仅仅通过使用高REE分布斜率(低Sm/Nd)有可能计算出精确的初始比值。然而如前所述,如果用于构筑等时线的分异系列,由于地壳混染的不断加深而具变化的初始比值,该方法可能给出错误的结果。
使用ε表示法,DePaolo和Wasserburg(1976b)在εNd对时间图上给出了大量的Nd同位素数据(图3-14)。他们注意到大陆火成岩全部时间内具非常接近0的εNd值。的确,太古宙岩石的误差范围与0重叠,表明了大陆火成岩来自具球粒陨石REE型式的源,可能代表着自地球形成以来原始物质的保存。
图3-13143Nd/144Nd对时间图解
图3-14以ε单位表示的Nd同位素随时间演化与球粒陨石演化线的偏差
一、球粒陨石模式年龄
DePaolo和Wasserburg(1976b)认为,如果球粒陨石均一源(CHUR)的演化线定义了大陆火成岩全部时间的初始比值,那么任何地壳岩石的143Nd/144Nd和147Sm/144Nd的测定将给出该岩石(或其前身)从球粒陨石源起源的模式年龄。如果在地壳从地幔抽提过程中存在充分的Nd/Sm分馏,而给出地壳和地幔演化线的合理分开(图3-15),并且具精确的交点。模式年龄由下式给出:
同位素地质年代学与地球化学
DePaolo和Wasserburg认为,如果样品的Sm/Nd比值自从其从球粒陨石源(当作地幔源)分离以来没有受到扰动,那么TCHUR可提供各种岩石的地壳形成年龄。许多元素研究指出,与沉积岩形成有关的风化和低温变质作用过程(如Haskin等,1966)甚至高级变质作用过程中(Green等,1969)在全岩尺度上REE相对不活泼。这种不活动性图示表示就是,在变质和沉积事件中在图3-15中上地壳样品的演化线不会偏转。
图3-15Nd同位素随时间演化图
McCulloch和Wasserburg(1978)在着重测定几个克拉通(主要来自加拿大地盾)岩石样品的地壳形成年龄时在模式年龄研究中应用了这些假定。McCulloch和Wasserburg发现苏必利尔、斯拉夫及丘吉尔构造省的杂岩样品Nd模式年龄在2.5~2.7Ga的范围内。在前两个地区中,以前测定的K-Ar和Rb-Sr年龄已给出了相同的结果。但丘吉尔省以前一直被认为在新的变质作用下重新启动过,得到2.7Ga的模式年龄,比先前测定的K-Ar年龄大约老0.8Ga。这些数据支持了地壳幕式增长的模式,说明2.5~2.7Ga前是显著广泛的大陆增生期。相比,格林威尔省杂岩得到的模式年龄为0.8Ga,并没有揭示出任何太古宙成分,表明它是更近的地壳增生到先存的地盾中。然而,该样品决不代表格林威尔省的全部,它也包含着重熔的太古宙和古元古代地壳体(Dickin和McNutt,1989)。
尽管Nd模式年龄一般用于地壳从地幔分离的时间,也作了其他更多特别的应用研究。Richardson等(1984)通过测定金刚石中石榴子石包裹体的年龄研究了南非地幔岩石圈中金刚石形成的时间。分析的三个样品,每一个由几百个亚钙石榴子石包裹体复合组成,得到总的10~45ng的Nd。由这些样品中放射成因的Nd得到3.19~3.41Ga的TCHUR年龄(图3-16)。这些证据与金刚石生长的亚固相线温度的证据(根据金刚石中石榴子石-橄榄石包裹体的平衡)相结合,表明在南非克拉通下自古太古代开始就存在大陆岩石圈。该物质可能代表了3.5Ga老的科马提岩抽提后的残留相。
图3-16南非金刚石中硅酸盐包裹体Nd同位素随时间演化图解
二、亏损地幔模式年龄
当看到太古宙深成岩对CHUR的Nd同位素演化线的良好拟合时,DePaolo和Wasserburg(1976b)也注意到年轻的洋中脊玄武岩(MORB)在CHUR演化线之上+7到+12个ε单位(图3-14)。他们认识到位于CHUR演化线的误差范围内的太古宙大陆火成岩能令人信服地位于以不断增加的Sm/Nd比值和143Nd/144Nd比值为特征的亏损地幔演化线上。然而,他们根据与月球Nd同位素演化的对比,对大陆火成岩乐于用球粒陨石源而没有采用此模式。
年龄为3.3~4Ga的月球玄武岩表现出宽变化范围的初始143Nd/144Nd比值,等同于对CHUR,其变化从+7到-2的ε单位(图3-17,Lugmair和Marti,1978)。这种分布表明在月球上很早就出现了Sm/Nd分馏,且不存在具有球粒陨石Sm/Nd比值的长期均一岩浆源。1976年分析的所有太古宙地球岩石没有表现出位于CHUR误差之外的分散的事实,导致DePaolo和Wasserburg(1976b)得出地球没有经历早期分异的结论,或者是即使分异了,也已由对流作用再均匀混合。
图3-17月岩的εNd随时间演化图解
该模式中缺少元古宙的Nd同位素数据是其严重的弱点,因为它留下了太古宙CHUR与现代MORB亏损源(=增高的Sm/Nd比值)数据之间的空缺,及两者之间关系的问题。填补此空缺的重要阶段是对科罗拉多FrontRange的元古宙变质基底的研究(DePaolo,1981)。来自爱达荷Springs组的4个变火山岩和两个紫苏花岗质麻粒岩用Sm-Nd等时线法测定了年龄。另外,对以前用Rb-Sr全岩法测定过年龄的3个深成岩(BoulderCreek,SilverPlume和PikesPeak花岗岩类)也作了Nd同位素和Sm/Nd测定。所有这些样的初始143Nd/144Nd比值都投点在图3-18的εNd对时间图上。
爱达荷Springs变火成岩集中于εNd(t)=+3.7±0.3,表明它们在1.8Ga相对于CHUR来自亏损地幔源。BoulderCreek样品也具正的εNd值(+1.7到+3.5),而SilverPlume和PikesPeak花岗岩具不断降低的εNd值,位于爱达荷Springs地壳平均143Nd/144Nd演化线上,表明它们包含了大量1.8Ga的基底重熔成分。
DePaolo对爱达荷Springs和现代岛弧数据拟合了一条二次曲线(图3-18),代表了钙碱性岩浆作用源区的不断亏损的Nd同位素演化。该曲线在古太古代紧靠CHUR演化线,但向现在不断偏离,相对于CHUR,在时间T,该亏损源的成分由下式给出:
同位素地质年代学与地球化学
图3-18εNd随时间变化关系图解
使用该亏损地幔曲线计算的Sm-Nd模式年龄记为TDM。DePaolo认为TDM模式年龄比TCHUR更精确地指示“地壳形成年龄”。例如,McCulloch和Wasserburg的格林威尔杂岩异常低的0.8GaTCHUR被修改成1.3GaTDM年龄,与得克萨斯Llano抬升的年龄相一致,被解释为相同省的一个部分。
由于DePaolo(1981)的元古宙亏损地幔的发现,新的分析激励着亏损地幔源演化的重新解释。例如,DePaolo(1983)利用新发表的前寒武纪玄武岩数据计算了具有曲线形式的更亏损地幔演化曲线。然而,新太古代曲线中不充分的数据随后由来自加拿大和南非的太古宙科马提岩的分析数据补充(Chauvel等,1983)。随后,Nelson和DePaolo(1984)根据元古宙玄武岩的成分和由Claoue-Long等(1984)计算出的Kambalda在3.2Ga时非常亏损的+3εNd值,建议使用上凸的亏损地幔曲线。
图3-19最广泛使用的两个亏损地幔演化模式的εNd随时间变化关系图解
对DePaolo(1981)模式的另一重要选择是Goldstein等在1984年提出的(图3-19)。该模式假定从4560Ma时εNd=0到现在(0Ma)εNd=+10(MORB成分)地幔是线性亏损的(即现今=0.51315,=0.2137),并对来自美国西南及格陵兰的古元古代绿岩(Nelson和DePaolo,1984;Patchett和Arndt,1986)作了良好的拟合。在这些岩套中最亏损的εNd值可能是裂谷环境中的几乎没有地壳混染的溢流玄武岩。然而,对于计算形成于弧环境中的英云闪长质造壳岩石的地壳抽提年龄这并不是最合适的地幔模式,这些岩石具比现今扩张脊较少亏损的Nd同位素特征。
启chur相关文章: